2024 |
||
12. | ![]() | L. R. McCourt; B. S. Routley; M. G. Ruppert; A. J. Fleming Feasibility of gold nanocones for collocated tip-enhanced Raman spectroscopy and atomic force microscope imaging Journal Article Forthcoming In: Journal of Raman Spectroscopy, Forthcoming, ISSN: 1097-4555. Abstract | Links | BibTeX | Tags: AFM, Cantilever, Optics @article{J23a, Microcantilever probes for tip-enhanced Raman spectroscopy (TERS) have a grainy metal coating that may exhibit multiple plasmon hotspots near the tip apex, which may compromise spatial resolution and introduce imaging artefacts. It is also possible that the optical hotspot may not occur at the mechanical apex, which introduces an offset between TERS and atomic force microscope maps. In this article, a gold nanocone TERS probe is designed and fabricated for 638 nm excitation. The imaging performance is compared to grainy probes by analysing high-resolution TERS cross-sections of single-walled carbon nanotubes. Compared to the tested conventional TERS probes, the nanocone probe exhibited a narrow spot diameter, comparable optical contrast, artefact-free images, and collocation of TERS and atomic force microscope topographic maps. The spot diameter was 12.5 nm and 19 nm with 638 nm and 785 nm excitation, respectively. These results were acquired using a single gold nanocone probe to experimentally confirm feasibility. Future work will include automating the fabrication process and statistical analysis of many probes. |
2022 |
||
11. | ![]() | C. Jidling; A. J. Fleming; A. G. Wills; T. B. Schon Memory efficient constrained optimization of scanning-beam lithography Journal Article In: Optics Express, vol. 30, no. 12, pp. 20564–20579, 2022, ISSN: 1094-4087. Abstract | Links | BibTeX | Tags: Optics @article{J22g, This article describes a memory efficient method for solving large-scale optimization problems that arise when planning scanning-beam lithography processes. These processes require the identification of an exposure pattern that minimizes the difference between a desired and predicted output image, subject to constraints. The number of free variables is equal to the number of pixels, which can be on the order of millions or billions in practical applications. The proposed method splits the problem domain into a number of smaller overlapping subdomains with constrained boundary conditions, which are then solved sequentially using a constrained gradient search method (L-BFGS-B). Computational time is reduced by exploiting natural sparsity in the problem and employing the fast Fourier transform for efficient gradient calculation. When it comes to the trade-off between memory usage and computational time we can make a different trade-off compared to previous methods, where the required memory is reduced by approximately the number of subdomains at the cost of more computations. In an example problem with 30 million variables, the proposed method reduces memory requirements by 67%; but increases computation time by 27%. Variations of the proposed method are expected to find applications in the planning of processes such as scanning laser lithography, scanning electron beam lithography, and focused ion beam deposition, for example. |
2020 |
||
10. | ![]() | L. McCourt; M. G. Ruppert; B. S. Routley; S. Indirathankam; A. J. Fleming A comparison of gold and silver nanocones and geometry optimisation for tip-enhanced microscopy Journal Article In: Journal of Raman Spectroscopy, vol. 51, iss. 11, pp. 2208-2216, 2020. Abstract | Links | BibTeX | Tags: AFM, Cantilever, MEMS, Optics, SPM @article{McCourt2020, In this article, boundary element method simulations are used to optimise the geometry of silver and gold nanocone probes to maximise the localised electric field enhancement and tune the near-field resonance wavelength. These objectives are expected to maximise the sensitivity of tip-enhanced Raman microscopes. Similar studies have used limited parameter sets or used a performance metric other than localised electric field enhancement. In this article, the optical responses for a range of nanocone geometries are simulated for excitation wavelengths ranging from 400 to 1000 nm. Performance is evaluated by measuring the electric field enhancement at the sample surface with a resonant illumination wavelength. These results are then used to determine empirical models and derive optimal nanocone geometries for a particular illumination wavelength and tip material. This article concludes that gold nanocones are expected to provide similar performance to silver nanocones at red and nearinfrared wavelengths, which is consistent with other results in the literature. In this article, 633 nm is determined to be the shortest usable illumination wavelength for gold nanocones. Below this limit, silver nanocones will provide superior enhancement. The use of gold nanocone probes is expected to dramatically improve probe lifetime, which is currently measured in hours for silver coated probes. Furthermore, the elimination of passivation coatings is expected to enable smaller probe radii and improved topographical resolution. |
9. | ![]() | A. J. Fleming; M. G. Ruppert; B. S. Routley; L. McCourt Overcoming the Limitations of Tip Enhanced Raman Spectroscopy with Intermittent Contact AFM Conference 8th Multifrequency AFM Conference, Madrid, Spain, 2020. Abstract | BibTeX | Tags: AFM, Multifrequency AFM, Optics, SPM @conference{Fleming2020, Tip enhanced Raman spectroscopy (TERS) is a promising technique for mapping the chemical composition of surfaces with molecular scale. However, current TERS methods are limited by a number of issues including high tip-sample forces, high laser power, low topographical resolution, and short probe lifetime. As a result, TERS methods are best suited to robust samples that can tolerate high optical intensity. To overcome these issues and extend the application of TERS to delicate samples, a number of new probes andimaging modes are in development at the University of Newcastle. This talk will provide an overview of these methods and present preliminary results, including new methods for optical probe optimization and fabrication, and a new dynamic-mode AFM method to reduce contact forces and applied laser power. |
2016 |
||
8. | ![]() | Y. K. Yong; A. J. Fleming High-speed Vertical Positioning Stage with Integrated Dual-sensor Arrangement Journal Article In: Sensors & Actuators: A. Physical, vol. 248, pp. 184–192, 2016. Abstract | Links | BibTeX | Tags: Nanopositioning, Optics, SPM @article{J16d, This article presents a novel vertical positioning stage with a dual-sensor arrangement suitable for scanning probe microscopy. The stage has a travel range of 8.4um and a first resonance frequency of 24kHz in the direction of travel. The sensor arrangement consists of an integrated piezoelectric force sensor and laminated piezoresistive strain sensor. The piezoelectric force sensor exhibits extremely low noise and introduces a zero into the dynamics which allows the use of integral force feedback. This control method provides excellent damping performance and guaranteed stability. The piezoresistive sensor is used for tracking control with an analog PI controller which is shown to be an approximate inverse of the damped system. The resulting closed-loop system has a bandwidth is 11.4kHz and 6-sigma resolution of 3.6nm, which is ideal for nanopositioning and atomic force microscopy (AFM) applications. The proposed vertical stage is used to replace the vertical axis of a commercial AFM. Scans are performed in constant-force contact mode with a tip velocity of 0.2mm/s, 1mm/s and 2mm/s. The recorded images contain negligible artefacts due to insufficient vertical bandwidth. |
7. | ![]() | Y. K. Yong; S. P. Wadikhaye; A. J. Fleming High-Speed Single-Stage and Dual-Stage Vertical Positioners Journal Article In: Review of Scientific Instruments, vol. 87, no. 085104, pp. (1-8), 2016. Abstract | Links | BibTeX | Tags: Nanopositioning, Optics @article{J16e, This article presents a high-speed single- and dual-stage vertical positioner for applications in optical systems. Each positioner employs a unique end-constraint method with orthogonal flexures to preload a piezoelectric stack actuator. This end-constraint method also significantly increases the first mechanical resonance frequency. The single-stage positioner has a displacement range of 7.6um and a first resonance frequency of 46.8kHz. The dual-stage design consists of a long-range slow-stage and a short-range fast-stage. An inertial counterbalance technique was implemented on the fast-stage to cancel inertial forces resulting from high-speed motion. The dual-stage positioner has a combined travel range of approximately 10um and a first evident resonance frequency of 130kHz. |
6. | ![]() | Y. K. Yong; S. P. Wadikhaye; A. J. Fleming High-Speed Single-Stage and Dual-Stage Mirror Scanners (Invited Paper) Proceedings Article In: International Conference on Manipulation, Automation and Robotics at Small Scales, Paris, France, 2016. Abstract | BibTeX | Tags: Nanopositioning, Optics @inproceedings{C16j, This article presents a high-speed single-stage and dual-stage mirror scanner for applications in optical systems. Each scanner employs a unique end-constraint method with orthogonal flexures to preload a piezoelectric stack actuator. This end-constraint method also significantly increases the first mechanical resonance frequency. The single-stage scanner has a displacement range of 7.6 m and a first resonance frequency of 46.8 kHz. The dual-stage design consists of a long-range slow-stage and a short-range fast-stage. An inertial counterbalance technique was implemented on the fast-stage to cancel inertial forces resulting from high-speed motion. The dual-stage scanner has a combined travel range of approximately 10 m and a first resonance frequency of 130 kHz. |
5. | ![]() | B. S. Routley; A. J. Fleming High Sensitivity Interferometer for on-Axis Detection of AFM Cantilever Deflection Proceedings Article In: International Conference on Manipulation, Automation and Robotics at Small Scales, Paris, France, 2016. Abstract | BibTeX | Tags: Optics, SPM @inproceedings{C16i, A homodyne path stabilised Michelson based interferometer displacement sensor was developed. This sensor achieved a noise floor of 100 fm/rt(Hz), for frequencies higher than 100 kHz. A prototype AFM that integrated this sensor was developed. Using tapping mode, topography maps of an AFM test grid were produced. |
2015 |
||
4. | ![]() | A. J. Fleming; B. S. Routley A Closed-Loop Phase-Locked Interferometer for Wide Bandwidth Position Sensing Journal Article In: Review of Scientific Instruments, vol. 86, pp. 115001(1-7), 2015. Abstract | Links | BibTeX | Tags: Nanopositioning, Optics, Sensors @article{J15f, This article describes a position sensitive interferometer with closed-loop control of the reference mirror. A calibrated nanopositioner is used to lock the interferometer phase to the most sensitive point in the interfer- ogram. In this conguration, large low-frequency movements of the sensor mirror can be detected from the control signal applied to the nanopositioner and high-frequency short-range signals can be measured directly from the photodiode. It is demonstrated that these two signals are complementary and can be summed to find the total displacement. The resulting interferometer has a number of desirable characteristics: it is optically simple, does not require polarization or modulation to detect the direction of motion, does not require fringe-counting or interpolation electronics, and has a bandwidth equal to that of the photodiode. Experimental results demonstrate the frequency response analysis of a high-speed positioning stage. The proposed instru- ment is ideal for measuring the frequency response of nanopositioners, electro-optical components, MEMs devices, Ultrasonic devices, and sensors such as surface acoustic wave detectors. |
3. | ![]() | A. J. Fleming; B. S. Routley; J. L. Holdsworth A Closed-Loop Phase-Locked Interferometer for Wide Bandwidth Position Sensing Proceedings Article In: IEEE Multi-conference on Systems and Control, Sydney, 2015. BibTeX | Tags: Nanopositioning, Optics, SPM @inproceedings{C15a, |
2. | ![]() | O. T. Ghalehbeygi; G. Berriman; A. J. Fleming; J. L. Holdsworth Optimization and Simulation of Exposure Pattern for Scanning Laser Lithography Proceedings Article In: IEEE Multiconference on Systems and Control, Sydney, 2015. BibTeX | Tags: Lithography, Optics @inproceedings{C15d, |
2014 |
||
1. | ![]() | Y. R. Teo; D. Russell; S. S. Aphale; A. J. Fleming Optimal Integral Force Feedback and Structured PI Tracking Control: Application for High Speed Confocal Microscopy Journal Article In: Mechatronics, vol. 24, no. 6, pp. 701-711, 2014. Abstract | Links | BibTeX | Tags: Nanopositioning, Optics @article{J14d, This paper describes a new vibration damping technique based on Integral Force Feedback (IFF). Classical IFF utilizes a force sensor and integral controller to damp the resonance modes of a mechanical system. However, the maximum modal damping depends on the frequency difference between the system’s poles and zeros. If the frequency difference is small, the achievable modal damping may be severely limited. The proposed technique allows an arbitrary damping ratio to be achieved by introducing an additional feed-through term to the control system. This results in an extra degree of freedom that allows the position of the zeros to be modified and the maximum modal damping to be increased. The second contribution of this paper is a structured PI tracking controller that is parameterized to cancel the additional pole introduced by integral force feedback. The parameterized controller has only one tuning parameter and does not suffer from reduced phase margin. The proposed techniques are demonstrated on a piezoelectric objective lens positioner. The results show exceptional tracking and damping performance while maintaining insensitivity to changes in resonance frequency. The maximum bandwidth achievable with a commercial PID controller is 26.1 Hz. In contrast, with the proposed damping and tracking controller, the bandwidth is increased to 255 Hz. |
2024 |
||
12. | ![]() | Feasibility of gold nanocones for collocated tip-enhanced Raman spectroscopy and atomic force microscope imaging Journal Article Forthcoming In: Journal of Raman Spectroscopy, Forthcoming, ISSN: 1097-4555. |
2022 |
||
11. | ![]() | Memory efficient constrained optimization of scanning-beam lithography Journal Article In: Optics Express, vol. 30, no. 12, pp. 20564–20579, 2022, ISSN: 1094-4087. |
2020 |
||
10. | ![]() | A comparison of gold and silver nanocones and geometry optimisation for tip-enhanced microscopy Journal Article In: Journal of Raman Spectroscopy, vol. 51, iss. 11, pp. 2208-2216, 2020. |
9. | ![]() | Overcoming the Limitations of Tip Enhanced Raman Spectroscopy with Intermittent Contact AFM Conference 8th Multifrequency AFM Conference, Madrid, Spain, 2020. |
2016 |
||
8. | ![]() | High-speed Vertical Positioning Stage with Integrated Dual-sensor Arrangement Journal Article In: Sensors & Actuators: A. Physical, vol. 248, pp. 184–192, 2016. |
7. | ![]() | High-Speed Single-Stage and Dual-Stage Vertical Positioners Journal Article In: Review of Scientific Instruments, vol. 87, no. 085104, pp. (1-8), 2016. |
6. | ![]() | High-Speed Single-Stage and Dual-Stage Mirror Scanners (Invited Paper) Proceedings Article In: International Conference on Manipulation, Automation and Robotics at Small Scales, Paris, France, 2016. |
5. | ![]() | High Sensitivity Interferometer for on-Axis Detection of AFM Cantilever Deflection Proceedings Article In: International Conference on Manipulation, Automation and Robotics at Small Scales, Paris, France, 2016. |
2015 |
||
4. | ![]() | A Closed-Loop Phase-Locked Interferometer for Wide Bandwidth Position Sensing Journal Article In: Review of Scientific Instruments, vol. 86, pp. 115001(1-7), 2015. |
3. | ![]() | A Closed-Loop Phase-Locked Interferometer for Wide Bandwidth Position Sensing Proceedings Article In: IEEE Multi-conference on Systems and Control, Sydney, 2015. |
2. | ![]() | Optimization and Simulation of Exposure Pattern for Scanning Laser Lithography Proceedings Article In: IEEE Multiconference on Systems and Control, Sydney, 2015. |
2014 |
||
1. | ![]() | Optimal Integral Force Feedback and Structured PI Tracking Control: Application for High Speed Confocal Microscopy Journal Article In: Mechatronics, vol. 24, no. 6, pp. 701-711, 2014. |